Evidence-Based Medicine Course

Des Moines Area
Medical Education Consortium
2014 - 2015

Results of Searching the Literature: Levels of Evidence

From: http://healthlinks.washington.edu/ebp/ebptools.html

Understanding Research Study Designs

- Systematic Reviews
- Meta-Analyses
- Evidence Summaries & Evidence Guidelines
- Randomized Controlled Trials
- **■** Cohort Studies
- **■** Case Control Studies
- Case Reports & Case Series

Case Reports and Case Series

- Report on a single patient or several patients with the same condition
- Used to clarify characteristics of the condition, treatment effects, adverse effects of treatment, etc.
- Most helpful with uncommon conditions
- No control group & no statistical validity
- Can be written up in short period of time

Case Control Studies

- Patients who already have a certain condition or treatment are compared with people who do not
- Try to draw conclusions from observations over time
- Often used to estimate odds of developing the condition being studied
- Can help determine if there is an association between a risk factor and the condition but can't establish absolute risk

Cohort Studies

- Longitudinal study following patients with a certain exposure or treatment over time
- Can compare to another group of patients not effected by the exposure or treatment under study
- May be either prospective or historical/retrospective
- Used to establish causation of a disease or evaluate the impact of a treatment when RCTs not possible
- Generally require large sample size and long follow-up period

Randomized Controlled Studies

- Gold standard in research
- Best at answering treatment questions
- Randomization avoids bias in the choice of patients receiving a given treatment
- Double blinding further reduces bias (minimizes the placebo effect)

Evidence Guidelines & Evidence Summaries

- Guidelines/Summaries generated by expert panel who together critically review available literature
- Must consider source & potential for bias of panel
- Must review methods used to search out available literature
- Best when controversies in literature re how best to diagnose/treat a condition

Meta-Analysis Studies

- Systematic, objective way of combining data from many studies
- Allows a pooled estimate of treatment effectiveness
 & stronger statistical significance of results
- Problems include publication bias & varying quality of studies from which data is extracted

Systematic Review Studies

- Comprehensive survey of a topic to include all relevant high level studies
- Assess all studies, synthesize the findings and present a balanced summary of the findings
- Especially good for evaluation of new technologies
 & new treatments
- Can include both published and unpublished studies
- More rigorous & less bias than a literature review

Group Exercise: With Your Partner

- Review the 6 Study Abstracts provided
- Identify the Research Study Design used in each of the 6 studies
- Hint... Each study design is used only once in the examples provided...

Treatment Decisions

So... when there is no Systematic Review or Meta-Analysis, or reliable Evidence Guideline or Summary to guide you, do a literature search looking for recent RCTs or Cohort Studies to help you plan your treatment.

Then... do a critical appraisal of these therapy studies. How do you critically review a therapy study article?

Critically Reviewing a Therapy Article

Steve Craig, M.D.

Three Basic Questions for Evaluating a Published Article

- 1. Are the results of the study valid?
- 2. What are the results?
- 3. Will the results help me in caring for my patients?

Are the results of the study valid?

- An unbiased estimate of the treatment effect vs.
- Influenced in some systematic fashion

What are the results?

- Must first establish significant benefit of treatment
- Then consider the size <u>and</u> precision of the treatment benefit
- Precision is superior in larger studies

Will the results help me in caring for my patients?

- Are the results applicable to my patients? (inclusion / exclusion criteria)
- What is the <u>net</u> impact of the treatment? (risk-benefit ratio)

Article on Therapy

1. Are the study results valid?

- **Primary Guides**: Can be easily applied by readers with limited time
- Secondary Guides: Reserved for articles that meet the 1° guides + when reader has time and/or need for more detailed review

Article on Therapy

1. Are the study results valid?

PRIMARY GUIDES:

- 1. Was allocation of patients properly concealed?
- 2. Was assignment of patients randomized?
- 3. Were all patients accounted for and attributed at conclusion of study?
 - * Study drop outs
 - * Patients lost to follow-up
 - * Intention-to-treat

Article on Therapy

1. Are the study results valid?

SECONDARY GUIDES:

- 1. Study blinded?
- 2. Control & treatment groups same at entry?
- 3. Control & treatment groups treated equally?
- 4. Study funding / potential for bias?
- 5. Statistical analysis: Power Analysis done?
 - * Sample size adequate?
 - *Power Analysis needed when trial results negative

Articles on Therapy

TYPES OF DATA REPORTED IN THERAPY STUDIES

- <u>Parametric data</u> = measured data (normally distributed quantitative data) reported as Mean + SEM
- Non-Parametric Nominal data = categorical data reported as Risk Ratios, Relative Risks, Odds Ratios, Likelihood Ratios with 95% Confidence Intervals
- <u>Non-Parametric **Ordinal** data</u> = rating, ranking, scoring data reported as Median + Range

Group Exercise: With Your Partner

- Review the Parametric vs. Non-Parametric Data Worksheet
- For the two studies described, determine if the type of data being collected is:
 - * Parametric Data
 - * Non-Parametric Nominal Data
 - * Non-Parametric Ordinal Data

Articles on Therapy

2. What are the results?

- a. Was the treatment benefit proven to a p < 0.05 level?
- b. Are the benefits both statistically & clinically significant?
- c. Was the treatment benefit large?
- d. Was the treatment benefit shown to be precise?

2a. Was the treatment proven beneficial to a p < 0.05 level?

Comparing Treatment Groups = Hypothesis Testing. Involves use of p values.

Hypothesis Testing

- Null Hypothesis = There is no difference between groups
- p value = Measure of the strength of the evidence in favor of the null hypothesis
- p < 0.05 = enough evidence against the null hypothesis to conclude there is a statistically significant difference between groups

Parametric Data: Significance Testing

If for 2 means, the SEM do not overlap, the 2 means will be significantly different (p < 0.05)

Example: 12 month study of 2 drugs used to lower cholesterol

Drug A: 190 ± 12 (178-202) Drug B: 165 ± 10 (155-175)

SEMs don't overlap so p value will be < 0.05

Non-Parametric Nominal Data: Significance Testing

When 95% CI for odds or risk ratios don't cross one, results will be significant (p < 0.05)

Example: 5-year study comparing 2 drugs used to prevent future heart attacks

Drug B vs. Drug A: RR 0.66 (0.60-0.75)

95% CI doesn't cross 1 so p value will be < 0.05

Non-Parametric Ordinal Data: Significance Testing

- Rating / Ranking / Scoring Data
- Data reported as Median Scores + Range
- Data less exact and significance harder to estimate

Example: 1-year study comparing 2 drugs used to treat Alzheimer's (baseline MMSE scores 24-26)

Drug A: Median MMSE Score 22 (20-24)* **Drug B**: Median MMSE Score 17 (14-20)*

*Results expressed as Median (25th-75th% range)

2b. Are the benefits both statistically & clinically significant?

■ Be careful of surrogate markers

Bone densitometry scores in osteoporosis treatment Behavioral index scores in ADHD treatment Carotid intimal thickness scores in CAD prevention

2c. Was the treatment benefit large?

- Parametric data: Absolute (quantitative) size of benefit
- Nominal (categorical) data: Look at ARR / <u>NNT</u>
- Ordinal data: Degree of improvement (qualitative)

Parametric Data

- Quantitative Data / Measured Variables
- Data reported as Average ± SD or Mean ± SEM

Example: 12-month study of 2 drugs used to lower cholesterol in pts with high Cholesterol

Baseline Cholesterol Mean = 250 ± 15 (SEM)

Drug A: Mean 190 ± 12 (24% lowering)

Drug B: Mean 165 ± 10 (34% lowering)

Non-Parametric Nominal Data

- Categorical Data
- Most common = dichotomous data (2 categories)
- Data reported as: Relative Risks / Risk Ratios / Odds Ratios / Likelihood Ratios (with 95% C.I.)

Example: 5-year study comparing 2 drugs used to prevent future heart attacks

Drug A: 8.9% MIs Drug B: 5.9% MIs Drug B vs. Drug A: RR 0.66 (0.60-0.75)

Non-Parametric Nominal Data (2)

■ Example: 5-year study comparing 2 drugs used to prevent future heart attacks

Drug A: 8.9% MIs Drug B: 5.9% MIs Drug B vs. Drug A: RR 0.66 (0.60-0.75)

RRR: 34% ARR: **3%**

NNT = 1/ARR = 1/.03 = 33.3

Therefore, 34 patients would need to be treated with Drug B instead of Drug A to prevent one MI

Non-Parametric Ordinal Data

- Rating / Ranking / Scoring Data
- Data reported as Median Scores <u>+</u> Range
- Data less exact and only note degree of improvement with treatment

Example: 2-year study comparing 2 drugs used to treat Alzheimer's Dementia (baseline MMSE scores 24-26)

Drug A: 22 (25-75% range, 20-24) **Drug B**: 17 (25-75% range, 14-20)

2d. Was the treatment benefit shown to be precise?

- Parametric Data
- Non-Parametric Nominal (Categorical) Data
- Non-Parametric Ordinal Data: **Not precise**

Assessing Precision in Studies with Parametric Data

<u>RULE</u>: If the SEM is \pm 10% of the mean, the data are very precise

Example: 12 month study of 2 drugs used to lower cholesterol (expressed as Mean <u>+</u> SEM)

Drug A: 190 ± 12 Drug B: 165 ± 10

SEM are less than 10% of the Mean so data are **precise**

Assessing Precision in Studies with Non-Parametric Nominal Data

<u>RULE</u>: If the 95% CI difference is less than 30% of the reported value, the data are precise

Example: 5-year study comparing 2 drugs used to prevent future heart attacks

Drug B vs. Drug A: RR 0.66 (**0.60-0.75**)

The size of the CI difference (0.15) is < 30% of the RR (0.66 x 30% = .198) so the data are **precise**

Assessing Precision in Studies with Non-Parametric Ordinal Data

Ordinal data

- More subjective data reporting
- Data reported as median with range
- This data is <u>NOT</u> precise!

Article on Therapy

- 3. Will the results help me in caring for my patients?
 - Are the patients studied similar to mine?
 - Were clinically important outcomes/benefits demonstrated?
 - Were significant adverse effects considered?
 - Is the treatment benefit worth the possible harms and costs? (cost-benefit analysis)

Worksheet for Assessing a Therapy Article

ARE RESULTS OF THE STUDY VALID?

1.	Primary Guides	Circle Yes / No			
	 a. Was allocation concealed from those enrolling patients in study? b. Was the study a randomized controlled trial? c. Were all study patients properly accounted for at conclusion of the study? d. Were the number of patients dropping out or lost to follow-up small (< 20%) & approximately equal between groups? e. Were patients analyzed in the group to which they were randomized? (intention-to-treat principle) 	Yes / No Yes / No Yes / No Yes / No Yes / No			
2.	Secondary Guides				
	 a. Were patients and study personnel blind to treatment? b. Were patients similar / balanced at the start of the trial? c. Were the groups treated equally (aside from the experimental intervention)? d. Was the study sponsored / funded by a pharmaceutical/device company? If so, is there evidence of bias? e. Regarding statistical analysis: →Was a power calculation done & was the proper sample size then recruited? 	Yes / No Yes / No Yes / No Yes / No Yes / No			
	*Power Analysis needed when trial results negative	103 / 110			
WHAT ARE THE RESULTS?					
1.	Was the treatment effect proven significant to a $p < 0.05$ level?	Yes / No			
2.	Was the treatment effect large? (Size of measured benefit or can ARR / RRR / NNT be determined?)	Yes / No			
3.	Are the results clinically as well as statistically significant?	Yes / No			
4.	Was the treatment effect shown to be precise?				
	a. For quantitative data, were standard errors of the mean \leq 10% of the mean? b. For categorical data, were 95% CI \leq 30% of the reported value? c. For ordinal data, there is no good way to estimate precision.	Yes / No Yes / No			
WILL THE RESULTS HELP ME CARE FOR MY PATIENTS?					
1.	Are the patients in the study similar to mine (inclusion/exclusion criteria)?	Yes / No			
2.	Were clinically important outcomes / benefits of treatment identified?	Yes / No			
3.	Were significant adverse effects of treatment considered?	Yes / No			
4.	Is the treatment benefit worth the possible harms and costs?	Yes / No			

Any Questions?

Final Group Exercise

- Work together to review the paper by Wang, et. al. NEJM July 4, 2013: "Clopidogrel with Aspirin in Acute Minor Stroke or TIA"
- Complete the: Worksheet for Assessing a Therapy Article
- We will then briefly review the paper together